Biodegradation of tannery wastewater using sequencing batch reactor--respirometric assessment.
نویسندگان
چکیده
This investigation proved that respirometry combined with sequencing batch reactor (SBR) could be an effective way for the removal of COD in tannery wastewater. Measurement of oxygen uptake rates (OUR) and corresponding COD uptake rates showed that a 12-h operating cycle was optimum for tannery wastewater. The removal of COD by degradation was stoichiometric with oxygen usage. A plot of OUR values provided a good indication of the biological activity in the reactor. A high OUR value corresponded to the feed period; at the end of the cycle, when the substrate was depleted, the OUR value was low. At a 12-h SBR cycle with a loading rate of 1.9-2.1 kgm(-3) d(-1), removal of 80-82% COD, 78-80% TKN and 83-99% NH(3)-N were achieved. These removal efficiencies were much higher than the conventional aerobic systems. A simple method of COD fractionation was performed from the OUR and COD uptake rate data of the SBR cycle. About 66-70% of the influent COD was found to be readily biodegradable, 10-14% was slowly degradable and 17-21% was non-biodegradable. The oxygen mass transfer coefficient, K(L)a (19 +/- 1.7 h(-1)) was derived from respirometry. It was observed that with the exception of high organic load at the initial feed the oxygen transfer capacity was in excess of the OUR, and aerobic condition was generally maintained. Simultaneous nitrification-denitrification was observed in the SBR during the feed period as proved by mass balance.
منابع مشابه
Biodegradation of Linear Alkyl Benzene Sulfonate by Sequencing Batch Reactor in Sanitary Wastewater
Introduction: Detergents lead to many environmental problems. The main aim of this study was to evaluate sequencing batch reactor (SBR) efficiency on Linear alkyl benzene sulfonate (LAS) removal. Materials and Methods: In this experimental study, to investigate the removal efficiency of LAS, a SBR reactor was used. A roughly 12-hour operating cycle was chosen which included the discharge time ...
متن کاملTannery wastewater treatment by sequencing batch biofilm reactor.
The paper reports the results of an investigation aimed to evaluate the performances of an innovative process for treating tannery wastewater. In such a process biological degradation, carried out in a sequencing batch biofilm reactor (SBBR), is combined with chemical oxidation by ozone. The treatment was carried out at laboratory scale on a real primary effluent coming from a centralized plant...
متن کاملThe effect of ozone on tannery wastewater biological treatment at demonstrative scale.
This paper reports the results obtained during an investigation aimed at transferring to the demonstrative scale an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor) integrated with ozonation for the efficient treatment of tannery wastewater. The results show that the integrated process was able to achieve high removal efficiencies for COD, TSS, TKN, surfactan...
متن کاملSequencing Batch Reactor: a Promising Technology in Wastewater Treatment
Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat munici...
متن کاملBiological Hydrogen Production: Simultaneous Saccharification And Fermentation With Nitrogen And Phosphorus Removal From Wastewater Effluent
A simple anaerobic biodegradation process using wastewater treatment plant (WWTP) effluent, shredded paper, and a purge of nitrogen gas was used to produce hydrogen and simultaneously capture nitrogen and phosphorus. Two reactor configurations, a sequencing batch reactor (SBR) and a classic batch reactor (CBR) were tested as simultaneous saccharification and fermentation reactors (enzymatic hyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 97 15 شماره
صفحات -
تاریخ انتشار 2006